
Making Microgrids Plug and
Play

Andrew Frank - Distributed Systems Architect
Christian Pinta - API Research/Programmer

Austin Thoreson - Systems and Hardware Engineer
Ben Eder - Software Developer

Saketh Jonnadula - Software Developer

Client: Nick David

Advisor: Matthew Wymore
sdmay23-36

Introduction
●Microgrid Pallets developed by Iowa State University

Electric Power Research Center (EPRC)

● Individually deliver 8kW, higher power applications
require synchronization

●Synchronizing pallets requires a specific setup
process and technical knowledge

Our Goal:

Simplify the process of connecting
pallets together and automate as
much as possible.

Existing Microgrid Overview

Mate 3
● Proprietary Interface
● Configures devices connected to Hub 10

AXS Port
● Interface for changing configurations
● Uses Sunspec commands via ModBus
● Translates Sunspec commands to proprietary

messages
Hub 10
● Distributes proprietary communications
● Coordinates communication between pallets

Radian (Inverter)
● Delivers power from batteries
● Outputs single phase AC power at 120 or

240V

Relevant Terms
● DDS (Data distribution service)

○ CycloneDDS

● Outback Power

○ Manufacturer of the pallet power components

● Sunspec

○ pySunSpec2

○ Open Standard for the Distributed Energy Industry

○ Interacts with compliant devices (Outback Power)

● Tactical Microgrid Standard (TMS)

○ Standard created by Department of Defense for Microgrid communication

● AC Source Synchronization

○ Requirements of independent ac sources in order for them to be coupled. Must be

similar in terms of Voltage, Frequency, and Phase Angle

Original Design Concerns

Problem

● Communication connections (Hub 10) are dependent upon
chosen leader/follower roles

Solution

● Elect a Leader via software
● Bypass Hub10 traditional networking

○ Allows for more dynamic communication across microgrids

Problem

● Configuration interface (Mate3) requires prior knowledge of
system

Solution

● Automatically configure system via a microcontroller and the
AXS Port

Traditional System Design

Proposed Multi-Pallet Design
Traditional Steps

1. User selects a given pallet as a leader

2. Connect RJ45 from “follower out” port on follower(s) to “follower in”

port on leader

3. On the leader pallet

a. Switch RJ45 to Master

b. Configure as a leader via the Mate3

i. Settings/Inverter/Stacking and set Port 1 as leader, and

other connected ports as followers

ii. Settings/Inverter/Power Share and configure appropriate

power share settings

4. On follower pallets

a. Switch RJ45 to Follower

5. Turn on each pallet and couple their outputs

a. Flip inverter switches to on

b. Turn on load breakers for each pallet

New Steps

1. Couple inverters AC outputs and dist. to loads

2. Connect pallets via ethernet cable

3. Close breakers for batteries to turn on pallets

4. Pallets can now distribute power to loads

Proposed Design Diagram

● No RJ45 switching or leader dependent routing

○ Use network switches instead

● Eliminates Mate3 and need for manual user configs

○ Uses Raspberry Pi and Axs Port

Network Design
● A Raspberry Pi is used to

control/configure a pallet via the
AXS port using SunSpec
commands.
○ The Pi and AXS port replace

the MATE 3
○ Eliminates static connections

between microgrids by
bypassing the HUB 10

● Pi communication occurs over a
standard Ethernet connection via
DDS (Data Distribution Service)
○ New grids can easily join an

existing grid through an
ethernet switch

Software Module
Diagram
● Microgrid Interaction Code
● Microgrid Controller Application
● Raspberry Pi Communication Code
● Graphical Interface Code

Devices
Libraries
Our Code

Legend

Controller Application Flow

Leader Election

Hardware Configurations
Challenge
● Hub 10 and Mate 3 were used to to coordinate AC

source synchronization via “Inverter Stacking”
● The AXS port did not allow us to change these

configurations
○ Deemed unsafe by manufacturer

Solution
● Find modes/variables accessible via the AXS port to

achieve synchronization
● Landed on Grid Tied input mode

○ Inverter synchronizes with AC input, and allows it to
pass through to the loads

○ Enable inverting and remove the AC input via added
relays

○ Follower begins inverting with similar characteristics
to source

AC Sources before (top) and after (bottom) synchronization

AC Source Synchronization
● Uses relays that can be triggered by Raspberry Pi

● Provides path for Leaders power to AC input of follower

● Process can be controlled by Raspberry Pi and AXS port

Diagram showing location of relays in the system

Leader Configurations

Follower Configurations

Hardware Testing Results

Phase shift characteristics of sources when coupled (left) vs uncoupled (right) for 30 mins

Current characteristics of sources coupled (left) vs uncoupled (right) for 30 mins

Work Accomplishments

● Microgrid Read and Write Code
○ Created missing model files for the pySunSpec2 API.

■ This allows access to parameters OutBack devices.

○ Created methods for easy interfacing with Microgrid devices

■ Allows for simpler, higher-end development.

■ Read/write packages of attributes at once

○ Network configuration that allows many devices to be connected
with a single controller

■ Static IPs linked to physical raspberry pi controller

Work Accomplishments

● Raspberry Pi Communication Code
○ Reaching consensus on a distributed network via election

○ Continuous monitoring and response to network events in the
main controller loop

● Controller Application

○ State machine design for sensing pallet connections and
configuring them accordingly

○ This can be adjusted to future configuration processes

● Promising AC synchronization approach
○ Takes advantage of grid-tied input mode, and the

transfer relay
○ Determined configurations necessary for software

implementation

● Physical wiring of pallets
○ Simply couple the AC outputs to a load
○ On board relays take care of extra routing

● Testing of this approach
○ Phase shift characteristics of sources

■ Coupled vs uncoupled
■ Current characteristics

○ Powering small loads (<1.5kW)

Work Accomplishments

● GUI screen
○ What the current screen looks like

○ Master slave mode

○ What outputs can be shown.

Work Accomplishments

Team Member Role Key Contributions

Austin Thoreson Systems/Hardware
Hardware configurations, AC source synchronization, all things
outback inverters and configuration, hardware testing,
configuration testing, wiring, etc…

Christian Pinta SunSpec API/Software
Researched SunSpec API, created necessary files and software
not provided by Outback or SunSpec, developed Microgrid
Interaction code, developed code to imitate AXS port

Andrew Frank Distributed Software
Researched and implemented algorithms for leader election and
heartbeating process. Implemented state machine software.
Coordinated schedules and meeting times.

Ben Eder Software engineer
Researched TMS functions, dataflow implementation and display
GUI library. Implemented heartbeat process.

Saketh Jonnadula Software Engineer
Helped research the TMS FUnctions, Worked on the GUI, Worked
on the implementation for the heartbeat into the GUI

Challenges and Solutions
Data

Reader

Challenge
● Collaboration of multiple devices over an

unreliable network

● Account for devices dropping at any time

Solution
● Timer threads, heart beating

● Return to a safe configuration on
unexpected changes

● In practice, more testing should be done
to determine reliable timeout periods

Challenges and Solutions

Challenge
● pySunSpec2 did not include all the model files that the project needed

Solution
● Created a Python script to convert the documentation value tables into the format

needed by pySunSpec2

 {
 "desc": "Model identifier",
 "label": "Model ID",
 "mandatory": "M",
 "name": "GSconfig_DID",
 "size": 1,
 "static": "S",
 "type": "uint16",
 "value": 64116
 },

Challenges and Solutions

Challenge
● Our project needed to work on 2 or more pallets but we only had 2 pallets to test with

Solution
● Created a Python script to imitate having another pallet connected to allow us to test our

code with as many potential pallets as we may need

Future Work

● Fix AXS port reading bugs

● Refinement of source synchronization

● Add small display to Microgrid

● Figure out how to power the network switch,
Raspberry Pi, and display from within the Microgrid

Future Work: TMS Compliance

● Monitoring and management of a tactical power devices.
● Communication protocols
● Messaging patterns
● Data models
● Validation and Conformance

TMS Draft
TMS Public Release

https://drive.google.com/file/d/1uTjj0T65ZqLr6jChxMlH1gi7inGc2z-A/view?usp=share_link
https://drive.google.com/file/d/1LnqERNr4cdj0GH1kbjShvUomfHi8SnR1/view?usp=share_link

Conclusion

● Objectives Accomplished
○ Raspberry Pi Network software

○ Promising Configuration Procedure with Example Software

○ SunSpec Communication

○ Base GUI Design

● Missed Objectives
○ TMS functionality was a reach goal

■ Client agreed we should base our system on TMS at this point

○ Ideal Configuration Procedure

○ Power sources for switch, relays, raspberry pi

